Universal properties of Bose systems with van der Waals interaction
نویسنده
چکیده
We show that universal properties of a many-atom quantum system exist at a much higher density, or a much shorter length scale, than those implied by traditional theories for a dilute Bose gas. In particular, a universal equation of state at length scale β6 = (mC6/h̄) (corresponding to the van der Waals interaction) is defined and investigated by combining the concept of effective potential, the constrained variational method and the analytic solution for the van der Waals potential. In one application, we show that a many-atom Bose system with negative scattering length may form a metastable liquid Bose– Einstein condensate (BEC) state with an equilibrium density that is controlled by a scaled scattering length. The realization of gaseous Bose–Einstein condensate (BEC) [1–3] has brought an explosion of activities in the study of many-atom quantum systems [4, 5]. Considerable advances have been made in using the Gross–Pitevaskii (GP) equation to simulate a vast variety of interesting phenomena that characterize a macroscopic quantum system [4, 5]. In terms of microscopic understanding, however, the rate of advance has been more limited. Much of what we know can still be summarized by the famous equation of state for a quantum gas of hard spheres [6, 7]:
منابع مشابه
Determination of the Second Virial Coefficient for Binary Mixtures of Ar with CH4 and CO using Van der Waals and Dieterici Models
In this paper, we calculate the second virial coefficient for binary mixtures of Ar with CH4 and CO in order to evaluate the performance of equations of state (EOSs). The investigated EOSs are van der Waals (vdW), Redlich-Kwong (RK), Peng-Robinson (PR), Carnahan-Starling–van der Waals (CS-vdW) and Guggenheim-van der Waals (G-vdW) based on van der Waals model. In our work, we also use Dieterici ...
متن کاملVolumetric properties of high temperature, high pressure supercritical fluids from improved van der Waals equation of state
In the present work, a modified equation of state has been presented for the calculation of volumetric properties of supercritical fluids. The equation of state is van der Waals basis with temperature and density-dependent parameters. This equation of state has been applied for predicting the volumetric properties of fluids. The densities of fluids were calculated from the new equation of state...
متن کاملVLE Predictions of Strongly Non-Ideal Binary Mixtures by Modifying Van Der Waals and Orbey-Sandler Mixing Rules
By proposing a predictive method with no adjustable parameter and by using infinite dilution activity coefficients of components in binary mixtures obtained from UNIFAC model, the binary interaction parameters (k12) in van der Waals mixing rule (vdWMR) and Orbey-Sandler mixing rule (OSMR) have been evaluated. The predicted binary interaction parameters are used in Peng-Robinson-S...
متن کاملInvestigation of Thermodynamic Consistency Test of Carbon Dioxide (CO2) in Room-Temperature Ionic liquids using Generic van der Waals Equation of State
Thermodynamic consistency test of isothermal vapor-liquid equilibrium (VLE) data of various binary systems containing Carbon dioxide (CO2)/Room temperature ionic liquids (RTILs) have been investigated in wide ranges of pressures in each isotherm precisely. In this paper Generic van der Waals (GvdW) equation of state (EoS) coupled with modified van der Waals Berthelot mixing rule has ...
متن کاملA Modified van der Waals Mixture Theory for Associating Fluids: Application to Ternary Aqueous Mixtures
In this study a simple and general chemical association theory is introduced. The concept of infinite equilibrium model is re-examined and true mole fractions of associated species are calculated. The theory is applied to derive the distribution function of associated species. As a severe test the application of presented theory to the van der Waals mixture model is introduced in order to p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004